Avoid Auto Repair Scams

3 Common Auto Repair Scams And How To Avoid Them

auto repair shop

Have you been a victim of auto repair fraud? Although there’s no shortage of good auto repair shops, there’s a group of conniving mechanics whose job is to rip you off in every fix. Let’s take a look at some common auto repair scams and ways to avoid them.

Your air filter  is too dirty and needs a replacement

If you’ve been to an auto shop and the mechanic is quick to tell you how dirty the air filter is and needs to be replaced, be extra cautious before spending your money on a new filter. Some mechanics will show you a dirty filter (which is not even yours) so that you buy something you don’t need. Don’t be the unsuspecting customer that’s easy to take advantage of. You should ensure that the air filter you are being shown is actually from your car. Furthermore, know when air filters need to be replaced based on the manufacturer’s recommendations (usually in every 15,000 to 30,000 miles).

You need an expensive oil change to boost your car’s performance

When you take your car for an oil change, you expect it to be simple and quick, right? But soon after leaving your car at the auto shop, you receive a call asking you to approve a certain type of oil that costs a lot more than what you expect. This is a common red flag. Some mechanics will even go ahead to tell you problems they have uncovered in your car as a result of the oil you’ve been using. Most of the times the problems being communicated to you are very technical and hard to see. Stay away from this scam by taking your car to a trustworthy auto repair shop.

Car problems that have been fixed without your knowledge

This is probably the most common auto repair scam known to this date. You take your car to the auto shop and ask them to find out what’s wrong with the car. A few hours later, you get a call from the mechanic telling you about many issues that they have resolved and it results in thousands of dollars which you have to pay. When you ask about the car repairs, they are likely to mention things to do with the transmission, spark plugs, gaskets and other components. You may be tempted to settle the bill in order to have your peace of mind. But don’t make that mistake. Paying for car repairs that you haven’t authorized is unacceptable. If you had asked for an initial quote then that is what you have to pay for.

Auto repair scams can cause you to spend a lot of time and money on unnecessary things. To avoid this, take your car to a reputable mechanic. An auto shop may appear to charge the lowest rates in town but you may end up paying more if they are known for fraud and theft. Most importantly, do not be intimidated by a garage that threatens to hold your car as collateral because you’ve refused to pay for unauthorized repairs. Call the police if the situation gets out of hand.

What Are Struts and Shocks

Do You Need To Replace The Shocks On Your Car

replacing the shock on your automobile

Your suspension soaks up the bumps in the road, keeping you comfortable and safe by allowing your brakes and tires to work as designed. Let’s look at the major components and then talk a little about what can go wrong.


Springs allow your car to absorb the energy of a bump or pothole, without jarring the occupants of the car. Most cars have 4 springs made from spring steel (huh imagine that!) and wound in a spiral shape. Some cars (Corvette) have transverse (across) springs and are made from fiberglass or other composite materials. Made to last the lifetime of the vehicle, properly sized springs seldom need to be replaced.


Shocks work to dampen the springs natural tendancy to oscillate. A good way to test your shocks is to push on a corner of your car and observe how many times the car bounces. More than twice and your shocks are worn. The shock is designed with fluid and internal passages to control the movement of the wheel and dampen the spring, over time the fluid can leak, degrade or the valving can become damaged.


Just a fancy unit that combines the spring and shock in to one unit. Usually a little more labor to remove the spring when replacing the shock (strut cartridge).

MacPherson Strut:

Just a fancier version of the Strut which also serves as the upper pivot point for the suspension.

Sway or Roll Bar:

When cornering the forces want to roll your car’s body to the outside of the turn. You feel this same force sitting inside the car. The Sway Bar counteracts this force and helps to keep the inside wheel in contact with the ground. Stiffer Sway Bar rates give a firmer ride, but better handling.

Ball Joints:

Your suspension is designed to move up and down with the road. This is accomplished with control arms which are connected to the spindle by ball joints. They are what they sound like, a ball and socket joint which allows movement in two dimensions. Most modern ball joints are lubricated with grease, and are sealed. Older ball joint and some newer truck ball joint do have a grease fitting to allow adding grease.


The spindle serves as the center point for your wheel, and rotor to rotate around. The spindle also connects to the lower control arm and upper control arm or MacPherson Strut. Through the travel of your suspension the spindle should remain as parallel to the road as possible. Suspension geometry is designed to keep as much of the tire in contact with the road as possible.

Common Problems:

  • Shocks and struts can wear out and affect handling. If you car bounces excessively over bumps and leans hard in corners, your shocks could be warn. Look behind the wheel for the shock or strut and look for leaking oil. This is a sure sign of a worn shock or strut. Also check your owners manual, some will give a mileage estimate for shock or strut life. As a general rule somewhere in the 60,000 – 75,000 mile range depending on your driving style and road conditions.
  • Ball joints. Ball joints wear and can cause your car to wander while driving down the road. This is dangerous as they can separate and cause you to lose control.
  • Sway bar bushings can wear out over time and will allow the sway bar to clunk when turning corners or at low speeds. A fairly inexpensive part to replace, but gaining access can be tricky depending on the vehicle.

Preventive maintenance:

  • Check your shocks or struts for leakage frequently. Also pay attention to how your car handles. If you notice the ride deteriorating take your car in to have the struts checked.
  • Ball joints should be checked when your car is inspected, if not, have your mechanic check them at least twice a year.
  • At each oil change make sure you or your mechanic lubricates the ball joints and any other suspension components. Some components can not be lubricated as they are sealed from the factory.

Engine Light

Is Your Engine Light ON??

how to fix my engine light on my car

There you are, driving down the road minding your own business and BAM ! You notice the “CHECK ENGINE LIGHT” on your dashboard is glowing. What does it mean ? What should you do ?

First of all, if your car has gauges on the dashboard, take a quick glance at the oil pressure and the temperature gauges. If they are not in thier normal range then you should stop as soon as possible and turn the engine off. This will prevent any additional damage ( $$$$$ ) Even if the oil pressure and temperature are in the normal range, it is probably a good idea not to drive the car any longer than you absolutely have to to get to a safe place to stop. Then have the car towed to your repair shop to have the problem diagnosed and repaired.

The “Check engine light” usually indicates a fairly serious problem. This light is usually triggered by either a loss of oil pressure in the engine or an overheating condition. Either of these conditions will cause serious and expensive damage if the engine is allowed to continue running !!!!

There is usually another light on the dashboard, the “Service engine soon” light. This light indicates that there is a problem with the engine, transmission or something attached to them. This light is not as “serious” as the “Check engine” light but still should not be ignored. It is usually safe to continue driving the car with the “service engine soon” light on, but is it is best to get it to your repair shop as soon as possible to find the problem.

All cars differ somewhat in the use of these two lights. A good rule of thumb is that a Red light is usually the most serious and a Yellow or Orange light is not as bad but still requires attention.

A lot of newer cars may only have one light called a Malfunction Indicator Light ( MIL )

This is why your owners manual should be the final say in what the lights indicate on your particular vehicle.

If you have a question, call your repair shop and they should be able to guide you as far as what to do.

How To Take Care Of Your Engine

Harmful Deposits In Your Engine

When deposit control additives are not adequate in gasoline, harmful deposits can build up inside the engine:

– Fuel varnish deposits that form inside the injectors restrict fuel delivery and cause the engine to run lean. This may cause lean misfires, rough idle, hesitation, poor fuel economy and increased HC emissions. A lean fuel mixture also increases the risk of detonation and preignition. These deposits tend to form during the heat soak period that occurs after the engine is shut off. The shorter the trips and the more frequent the drive cycles, the faster these deposits build up.

– Deposits that form in the throttle body can reduce airflow through the idle bypass circuit, thus affecting idle quality and smoothness. These deposits are formed by fuel vapors that rise up through the intake manifold.

– Deposits that form on the intake valves can restrict airflow through the intake ports, causing a loss of high-speed power. The deposits also can act like a sponge and momentarily soak up fuel spray from the injectors. This disrupts the mixing of air and fuel, causing a lean fuel condition, hesitation and reduced performance. Deposits also can cause valve sticking and valve burning. Intake valve deposits are formed by normal combustion byproducts, but may build up more rapidly if the valve guides or seals are worn and the engine is sucking oil down the guides.

– Deposits that form inside the combustion chamber and on top of the pistons increase the compression ratio of the engine and the octane requirements of the fuel. Too much compression can cause spark knock (detonation) if the fuel’s octane rating isn’t high enough. Over time, detonation can damage the head gasket, piston rings and rod bearings if it is not controlled. The knock sensor will detect detonation and tell the PCM to retard spark timing. This will take care of the knock, but retarded timing also increases fuel consumption and emissions.

A buildup of carbon deposits inside the combustion chamber also increases the risk of hot spots forming that may cause engine-damaging preignition. The hot spot ignites the fuel before the spark plug fires, causing a sharp rise in combustion pressure. Under extreme conditions (high rpm and load), preignition can burn a hole right through the top of a piston!

A condition known as Combustion Chamber Deposit Interference (CCDI) also can occur when the carbon deposits are so thick that the deposits on the piston and head make physical contact. This area, known as the squish area (piston to top of chamber), has a clearance that is about as thick as a paper clip. This can cause a loud metallic banging sound when a cold engine is first started. The deposits are soft and will gradually flake off. However, the flakes may lodge between the valves and seats causing a loss of compression, misfires and rough running when the engine is cold (a condition called Combustion Chamber Deposit Flaking, or CCDF).

Due to tighter tolerances, deposits on intake valves in today’s vehicles (left) are of a harder, more carbonaceous makeup and appear to be more fuel related than in older engines that had deposits as a result of engine oil.

Deposit Control

The formation of harmful deposits can be controlled by adding detergent-dispersants to gasoline, the most common of which is polybutene succinimide. Used with a petroleum carrier oil, detergent-dispersants help keep the intake manifold and ports clean. These chemicals are more effective than the carburetor detergents that were once used in gasoline, but they must be used at concentrations that are three to five times higher than that of the older carburetor detergents.

Deposit control additives such as polybutene amine (PBA) were introduced in 1970 to help keep injectors and intake valves clean. The only drawback with PBA is that too much of it can increase combustion chamber deposits. Polyetheramine (PEA), by comparison, cleans fuel injectors and valves, and does not increase combustion chamber deposits. In fact, it helps remove accumulated deposits inside the combustion chamber to reduce the risk of spark knock.

In 1995, the U.S. Environmental Protection Agency set minimum standards for additives in gasoline to prevent the formation of deposits in fuel injectors. Gasoline refiners had to certify that their additive packages met these standards, but some experts now say the original standards were set too low and do not provide adequate protection with some fuels and engines. The minimum EPA-required level is referred to as the “Lowest Additive Concentration” (LAC), and is typically found in the cheapest-priced gasoline.

At the other end of the fuel quality spectrum are “Top Tier” gasolines. These fuels are recognized by the vehicle manufacturers as having the most effective additives in the highest concentrations. Gasoline retailers must meet the high Top Tier standards with all their grades of gasoline (not just premium) to be designated a Top Tier supplier. In addition, all the gasoline outlets carrying the brand of approved gasoline also must meet the same standards.

Unfortunately, fuel quality isn’t something that is easily policed. Many states have programs in place to monitor fuel quality on either an ongoing basis or “incident-specific” basis. Most are run by the state’s Department of Weights and Measures. Even so, the focus of most of these programs is to make sure consumers aren’t being cheated at the pump and get the full gallon they pay for. Some programs also check fuels to make sure they do not contain too much alcohol. The specific density of gasoline can be field tested to determine its volatility and alcohol content. But testing octane and the amount and type of additives in the fuel requires expensive laboratory testing. So this type of quality testing is rarely done.

According to one leading gasoline retailer (who sells a Tier One fuel, by the way), many gasoline marketers have reduced the concentration of fuel additives in their fuel by up to 50% in recent years!

Most gasoline refiners don’t want to sell the public bad gas because they obviously want repeat customers. Even so, they know that deposit formation is a gradual thing that occurs over time. So if they cut back on their additive package to save a few cents per gallon, nobody is the wiser.

The problem occurs when people buy the cheapest LAC gas they can find every time they fill their tank. The low levels of additives (or low-quality additives) in the fuel will not be adequate to keep their engine clean, and sooner or later, the automotive servicecar will start to experience driveability problems.

Worse yet, if a bad batch of fuel leaves a refinery and ends up in people’s vehicles, it can cause even more serious problems. There have been instances where too much residual sulfur in a bad batch of gasoline has caused a rash of fuel pump failures.

Immediate driveability problems also may occur if the fuel is contaminated with water, contains too much alcohol or has the wrong type of alcohol (e.g., methanol instead of ethanol). Alcohol is a great octane booster, but for ordinary gasoline, the amount of ethanol should not exceed 10% (or 5% for methanol). The only exception here is G85 fuel for “flex-fuel” vehicles that is 85% ethanol and 15% gasoline.

Getting Rid of Deposits

When a vehicle is experiencing deposit-related driveability, performance or emissions problems, the deposits obviously have to go. The troublesome deposits can be removed a variety of ways. One cost-effective solution to deposit-related driveability issues is to simply add a can of fuel system cleaner to the fuel tank. The cleaner will slowly remove the deposits while the vehicle is driven. The only drawback with this approach is that it takes time — maybe one or two tankfuls with the additive to make a noticeable difference. That may be too long for some people.

For those who want a more immediate fix, the cure usually consists of flushing the injectors with a concentrated solvent or cleaning product, and/or feeding an intake system cleaner of some type into the engine while it is running to clean the intake ports, valves and combustion chamber. Be careful, some vehicles have a teflon-like coating on the throttle body that can be damaged by solvents. Also, be careful with turbocharged engines because the excess solvent could overheat the turbo and damage the seals.

If injectors fail to respond to on-car cleaning, they can be removed for more thorough off-car cleaning on special equipment — or be replaced if they are clogged and can’t be cleaned.

For heavy carbon deposits inside the combustion chamber, a top cleaning product may be added to the engine to soak for 15-20 minutes to loosen the deposits. An oil change afterward is recommended because some of the cleaner will end up in the crankcase.

Additives Are Not All the Same

One very important point to keep in mind about aftermarket fuel system cleaners is that they use different chemistries to achieve different results. As we said earlier, some chemicals such as PBA can clean injectors and valves, but may actually increase combustion chamber deposits. Other chemicals such as PEA can clean the entire fuel system as well as the combustion chambers.

One new fuel system cleaning product that has been recently introduced claims to do something no other product does: actually clean and protect the contacts on fuel gauge sending units. The contacts on the sending unit are typically plated with silver-palladium to resist corrosion. But over time, residual sulfur in gasoline can corrode the contacts, causing the gauge to rear erratically or not at all. Replacing the sending unit is an expensive job because you have to drop the fuel tank, so a more affordable alternative is to simply add a bottle of this product to the tank and let it take care of the corrosion.